Identification of PBP3 mutations in invasive Haemophilus influenzae isolates

I. DNA extraction

Extraction is achieved using a heating block, pre-set to $100^{\circ} \mathrm{C}$.

1. Aliquot $200 \mu \mathrm{l}$ sterile DNAse-free distilled water into a labelled 1.5 ml Eppendorf tube.
2. Resuspend 1-3 well isolated colonies from an overnight culture.
3. Transfer the tube to the heating block and boil for 10 min , then cool down at $-20^{\circ} \mathrm{C}$ for 10 min and centrifuge for 1 min at $11,000 \mathrm{~g}$.
4. Transfer the supernatant into a second appropriately labelled tube. Discard the pellet.
5. This DNA extract can be used immediately or stored a $-20^{\circ} \mathrm{C}$ until required.

II. PCR amplification

PCR tailed-primers

Name	Sequence $\left(5^{\prime}-3^{\prime}\right)^{*}$	fts/ target sequence**
ftsl1F	GTTTCCCAGTCACGACGTTGTAGTTAATGCGTAACCGTGCAATTAC	$936-960$
ftsl1R	TTGTGAGCGGATAACAATTTCACCACTAATGCATAACGAGGATC	$1640-1617$

[^0]Primer stock solutions, $100 \mu \mathrm{M}$ in TE buffer, kept at $-20^{\circ} \mathrm{C}$ Primer working dilutions, $10 \mu \mathrm{M}$ in TE buffer

PCR reaction mix:

	per reaction
$\mathrm{H}_{2} \mathrm{O}$	$31.2 \mu \mathrm{l}$
dNTPs $(5 \mu \mathrm{M}$ of each $)$	$2 \mu \mathrm{l}$
$\mathrm{MgCl}_{2}(25 \mathrm{mM})$	$5^{*} \mu \mathrm{l}$
ftsIF $(10 \mu \mathrm{M})$	$2 \mu \mathrm{l}$
ftsI1R $(10 \mu \mathrm{M})$	$2 \mu \mathrm{l}$
High-fidelity Taq polymerase**	$0.3 \mu \mathrm{l}$
10 x corresponding buffer	$5 \mu \mathrm{l}$
DNA extract	$5 \mu \mathrm{l}$

[^1]
PCR cycle:

$3 \mathrm{~min}, 94^{\circ} \mathrm{C}$ (denaturation), then:
10 cycles
$30 \mathrm{sec}, 94^{\circ} \mathrm{C}$ (denaturation)
$30 \mathrm{sec}, 50^{\circ} \mathrm{C}$ (annealing)
$40 \mathrm{sec}, 72^{\circ} \mathrm{C}$ (extension)
30 cycles
$30 \mathrm{sec}, 94^{\circ} \mathrm{C}$ (denaturation)
$30 \mathrm{sec}, \mathbf{6 0}^{\circ} \mathrm{C}$ (annealing)
$40 \mathrm{sec}, 72^{\circ} \mathrm{C}$ (extension)
End with 1 cycle of 5 minutes at $72^{\circ} \mathrm{C}$
Once the programme has finished the samples can be run on an electrophoresis gel immediately or stored at $2-8^{\circ} \mathrm{C}$.

Expected size of the amplified fragment $\left(f s t l_{\text {int }}\right)$: $705 \mathbf{b p}$.

IV. Purification of PCR products

Use a PCR fragment clean-up kit (e.g., NucleoSpin ${ }^{\circledR}$ gel and PCR clean-up kit, Macherey-Nagel).
Elution volume of purified PCR product, 15-30 $\mu \mathrm{l}$.

V. Sequencing

Sequencing primers

Name	Sequence (5'-3')
SeqftsF	GTTTTCCCAGTCACGACGTTGTA
SeqftsR	TTGTGAGCGGATAACAATTTC

Primer working dilutions, $1 \mu \mathrm{M}$ in water
Sequencing reaction using BigDye® Terminator v3.1 cycle sequencing kit
per reaction
Water $\quad 7.8 \mu \mathrm{l}$
SeqftsF or SeqftsR $(1 \mu \mathrm{M}) 3.2 \mu \mathrm{l}$
5X buffer
BigDye v3.1

Add $4 \mu \mathrm{l}$ of PCR product purification eluate (minimum DNA amount, 20 ng)

Cycling program

$1 \mathrm{~min}, 96^{\circ} \mathrm{C}$, then: 25 cycles
$10 \mathrm{sec}, 96^{\circ} \mathrm{C}$
$5 \mathrm{sec}, 50^{\circ} \mathrm{C}$
$4 \mathrm{~min}, 60^{\circ} \mathrm{C}$
Cool down to $4^{\circ} \mathrm{C}$

Purification of sequencing products

Use a clean-up kit (e.g., NucleoSEQ ${ }^{\circledR}$, Macherey-Nagel).

VI. Sequence analysis and data submission

$f_{s t} l_{\text {int }}$ sequences will be compared to that of reference strain Rd KW20. Before uploading to the web site, sequences must be trimmed to a 621-bp fragment corresponding to nucleotides 977-1597, as shown:

Complete sequence including the ftsI1F and ftsl1R primers :

> GTTAATGCGTAACCGTGCAATTACCGATACTTTTGAGCCAGGTTCTACGGTAAAACCTTTCGTTGTTTTAACC GCACTTCAACGAGGTGTAGTTAAACGAGATGAAATTATTGATACTACGTCCTTTAAATTAAGCGGTAAAGAAAT TGTGGACGTTGCACCACGTGCTCAGCAAACTTTAGACGAGATTTAATGAACTCTAGTAACCGTGGTGTAAGT CGTCTTGCATTACGTATGCCACCTAGTGCATTAATGGAAACTTATCAAAATGCAGGTTTAAGTAAACCGACAG ATTTAGGCTTGATCGGAGAGCAAGTTGGGATTTTGAATGCAAATCGTAAACGCTGGGCAGATATTGAGCGTG CAACAGTCGCTTATGGTTATGGTATTACTGCGACACCTTTACAAATTGCTCGTGCCTATGCAACCCTTGGTAG TTTCGGTGTTTATCGTCCGCTTTCTATCACTAAAGTTGATCCGCCAGTTATTGGGAAACGGGTTTTCTCTGAAA AAATAACTAAAGATATTGTGGGAATTTTAGAGAAAGTAGCAATTAAAAATAAACGCGCAATGGTGGAAGGCTA CCGTGTCGGCGTAAAAACAGGTACGGCACGTAAGATTGAAAATGGACATTATGTAAATAAGTATGTGGCATTT ACTGCGGGTATTGCACCAATTAGTGATCCTCGTTATGCATTAGTGGT

Deduced peptide sequence of the 621-bp fragment (in red, amino acids most frequently substituted in isolates with reduced susceptibility to β-lactams):

326GSTVKPFVVLTALQRGVVKRDEIIDTTSFKLSGKEIVDVAPRAQQTLDEILMNSSNRGVSRLALRMP PSALMETYQNAGLSKPTDLGLIGEQVGILNANRKRWADIERATVAYGYGITATPLQIARAYATLGSFGV YRPLSITKVDPPVIGKRVFSEKITKDIVGILEKVAIKNKRAMVEGYRVGVKTGTARKIENGHYVNKYVAF T532

Upload protocol, web access :

Participants will submit their strain information and fstl sequence to a PubMLST.org database for H. influenzae (to be created soon). Information and upload protocol will be made available on the web site. In order to maintain the quality of the data, the database will be curated and submissions will be checked before entry.

For any questions, please contact Olivier Gaillot, olivier.gaillot@chru-lille.fr

[^0]: * Includes non-complementary 5'-end adapter tail (green lettering) for further sequencing.
 ** Nucleotide numbering refers to that of the ftsl sequence of H. influenzae Rd KW20 (ATCC 51907), accession no. L_{42023}

[^1]: * final concentration in the mix, $2.5 \mu \mathrm{M}$ (i.e., 125 nM per reaction). If PCR buffer already contains MgCl_{2}, adjust concentration to $2.5 \mu \mathrm{M}$.
 ${ }^{* *} e . g$. AmpliTaq Gold DNA polymerase (Roche).

